Boolean Product Polynomials, Schur Positivity, and Chern Plethysm
نویسندگان
چکیده
منابع مشابه
Thom polynomials of invariant cones , Schur functions , and positivity
We generalize the notion of Thom polynomials from singularities of maps between two complex manifolds to invariant cones in representations, and collections of vector bundles. We prove that the generalized Thom polynomials, expanded in the products of Schur functions of the bundles, have nonnegative coefficients. For classical Thom polynomials associated with maps of complex manifolds, this giv...
متن کاملPositivity of Schur function expansions of Thom polynomials
Combining the approach to Thom polynomials via classifying spaces of singularities with the Fulton-Lazarsfeld theory of cone classes and positive polynomials for ample vector bundles, we show that the coefficients of the Schur function expansions of the Thom polynomials of stable singularities are nonnegative with positive sum.
متن کامل2 00 5 Schur Positivity and Schur Log - Concavity
We prove Okounkov’s conjecture, a conjecture of Fomin-FultonLi-Poon, and a special case of Lascoux-Leclerc-Thibon’s conjecture on Schur positivity and give several more general statements using a recent result of Rhoades and Skandera. An alternative proof of this result is provided. We also give an intriguing log-concavity property of Schur functions. 1. Schur positivity conjectures The ring of...
متن کاملNecessary Conditions for Schur-positivity
In recent years, there has been considerable interest in showing that certain conditions on skew shapes A and B are sufficient for the difference sA − sB of their skew Schur functions to be Schur-positive. We determine necessary conditions for the difference to be Schur-positive. Our conditions are motivated by those of Reiner, Shaw and van Willigenburg that are necessary for sA = sB , and we d...
متن کاملSchur-Positivity in a Square
Determining if a symmetric function is Schur-positive is a prevalent and, in general, a notoriously difficult problem. In this paper we study the Schur-positivity of a family of symmetric functions. Given a partition ν, we denote by νc its complement in a square partition (mm). We conjecture a Schur-positivity criterion for symmetric functions of the form sμ′sμc − sν′sνc , where ν is a partitio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2020
ISSN: 1073-7928,1687-0247
DOI: 10.1093/imrn/rnz261